LQR and SMC Stabilization of a New Unmanned Aerial Vehicle

نویسندگان

  • Kaan T. Oner
  • Ertugrul Cetinsoy
  • Efe Sirimoglu
  • Cevdet Hancer
  • Taylan Ayken
  • Mustafa Unel
چکیده

We present our ongoing work on the development of a new quadrotor aerial vehicle which has a tilt-wing mechanism. The vehicle is capable of take-off/landing in vertical flight mode (VTOL) and flying over long distances in horizontal flight mode. Full dynamic model of the vehicle is derived using Newton-Euler formulation. Linear and nonlinear controllers for the stabilization of attitude of the vehicle and control of its altitude have been designed and implemented via simulations. In particular, an LQR controller has been shown to be quite effective in the vertical flight mode for all possible yaw angles. A sliding mode controller (SMC) with recursive nature has also been proposed to stabilize the vehicle’s attitude and altitude. Simulation results show that proposed controllers provide satisfactory performance in achieving desired maneuvers. Keywords–UAV, VTOL, dynamic model, stabilization, LQR, SMC

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

LQR-PID Control Applied to Hexacopter Flight

In this paper the mathematical model representing the dynamic of a Unmanned Aerial Vehicle (UAV) is studied in order to analyse its behaviour. In order to stabilize the entire system, linear Quadratic Regulator (LQR) control is used in such a way to set both PD and PID controls in position variables. A set simulation is performed to carry out the results for linear and non linear models. The LQ...

متن کامل

Dynamic Model and Control of a New Quadrotor Unmanned Aerial Vehicle with Tilt-Wing Mechanism

Abstract—In this work a dynamic model of a new quadrotor aerial vehicle that is equipped with a tilt-wing mechanism is presented. The vehicle has the capabilities of vertical take-off/landing (VTOL) like a helicopter and flying horizontal like an airplane. Dynamic model of the vehicle is derived both for vertical and horizontal flight modes using Newton-Euler formulation. An LQR controller for ...

متن کامل

Unmanned aerial vehicle field sampling and antenna pattern reconstruction using Bayesian compressed sensing

Antenna 3D pattern measurement can be a tedious and time consuming task even for antennas with manageable sizes inside anechoic chambers. Performing onsite measurements by scanning the whole 4π [sr] solid angle around the antenna under test (AUT) is more complicated. In this paper, with the aim of minimum duration of flight, a test scenario using unmanned aerial vehicles (UAV) is proposed. A pr...

متن کامل

Trajectory Optimization for Perching Quadrotor Vehicles

Unmanned aerial vehicles (UAVs) have been carefully optimized for forward flight regimes over the past fifty years. While engineers learned to construct highly maneuverable craft to be flown by human operators, autonomous control of such highly underactuated systems has continued to be a difficult issue. New flight capabilities for aircraft have been enabled through recent advances in materials...

متن کامل

Fuzzy LQR Controller for Heading Control of an Unmanned Surface Vessel

Recently the applications of unmanned systems are steadily increasing. Unmanned Surface Vessels (USV) can be used for military and rescue purposes. This paper designs a Fuzzy-LQR controller for Heading control of the USV system. A new analysis of the fuzzy system behavior presented helps to make possible precise integration of LQR features into fuzzy control. This Fuzzy-LQR controller is used t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009